PHYS-443 Physics of nuclear reactors

Hursin Mathieu				
Cursus	Sem.	Туре	Language of	English
Ingphys	MA1, MA3	Opt.	teaching	Linglish
Nuclear engineering	MA1	Obl.	Credits	4
Physicien	MA1, MA3	MA1, MA3 Opt. Session	Session Semester	Winter Fall
			Exam	Oral
			Workload	120h
			Weeks	14
			Hours	3 weekly
			Courses	2 weekly
			Exercises	1 weekly

Summary

In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain reaction.

Content

• Brief review of nuclear physics

- Historical: Constitution of the nucleus and discovery of the neutron - Nuclear reactions and radioactivity - Cross sections - Differences between fusion and fission.

Nuclear fission

- Characteristics Nuclear fuel Introductory elements of neutronics.
- Fissile and fertile materials Breeding.

· Neutron diffusion and slowing down

- Monoenergetic neutrons Angular and scalar flux
- Diffusion theory as simplified case of transport theory Neutron slowing down through elastic scattering.

• Multiplying media (reactors)

- Multiplication factors - Criticality condition in simple cases.

- Thermal reactors - Neutron spectra - Multizone reactors - Multigroup theory and general criticality condition -

Heterogeneous reactors.

- Reactor kinetics
- Point reactor model: prompt and delayed transients Practical applications.
- Reactivity variations and control
- Short, medium and long term reactivity changes. Different means of control.

Learning Outcomes

By the end of the course, the student must be able to:

- Elaborate on neutron diffusion equation
- Formulate approximations to solving the diffusion equation for simple systems
- · Classify nuclear reaction cross sections

Transversal skills

• Access and evaluate appropriate sources of information.

Number of positions

- Collect data.
- Use both general and domain specific IT resources and tools

Teaching methods

Lectures, numerical exercises

Assessment methods

oral exam (100%)