

| PHYS-435  | Statistical physics III |          |      |                     |           |
|-----------|-------------------------|----------|------|---------------------|-----------|
|           | Wyart Matthieu          |          |      |                     |           |
| Cursus    |                         | Sem.     | Type | Language of         | English   |
| Ingphys   |                         | MA1, MA3 | Opt. | teaching            | Liigiisii |
| Physicien |                         | MA1, MA3 | Opt. | Credits             | 5         |
|           |                         | ,        | - 1  | Session             | Winter    |
|           |                         |          |      | Semester            | Fall      |
|           |                         |          |      | Exam                | Written   |
|           |                         |          |      | Workload            | 150h      |
|           |                         |          |      | Weeks               | 14        |
|           |                         |          |      | Hours               | 4 weekly  |
|           |                         |          |      | Courses             | 2 weekly  |
|           |                         |          |      | Exercises           | 2 weekly  |
|           |                         |          |      | Number of positions |           |

# **Summary**

This course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety of complex systems (random walks and polymers, disordered systems, combinatorial optimisation, information theory and error correcting codes).

#### Content

- 1. Introduction to statistical field theory
- 2. Random walks and self-avoiding polymers
- 3. Percolation, Networks
- 4. Information theory and error correcting codes
- 5. Disorded systems (spin glasses) and combinatorial complexity

## **Learning Prerequisites**

#### **Recommended courses**

Statistical Physics II

## **Learning Outcomes**

By the end of the course, the student must be able to:

• Solve problems in complex systems

## Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

## **Teaching methods**

Ex cathedra. Exercises in class

#### **Assessment methods**

Take home exam

Statistical physics III Page 1 / 1