PHYS-427	Relativity and cosmology I	
	Shaposhnikov Mikhail	

Cursus	Sem.	Туре	Language of	English
Ingphys	MA1, MA3	Opt.	teaching	LIIGIISII
Physicien	MA1, MA3	Opt.	Credits	5 Winter

Summary

Introduce the students to general relativity and its classical tests.

Content

Special Relativity (Review):

- Lorentz transformations
- Energy-momentum tensor

General relativity:

- Equivalence principle
- Tensor analysis and physics in curved space-time
- Einstein's equations
- Schwarzschild solution
- Classical tests of Einstein's theory
- Gravitational waves

Learning Prerequisites

Required courses Analytical mechanics Classical Electrodynamics

Learning Outcomes

By the end of the course, the student must be able to:

- Explain the basic concepts of special and general relativity
- Describe physical phenomena in different coordinate systems
- Compute Christofell symbols and curvatures from a given line element
- Solve Einstein's field equations for static spherically symmetric problems
- Explain the observational effects at the scale of the Solar System that cannot be described by Newtonian gravity

Teaching methods

Fall

Oral

150h

2 weekly 2 weekly

14 **4 weekly**

Semester

Workload

Courses

Exercises Number of positions

Weeks

Hours

Exam

Assessment methods

final exam 100%

Supervision

Office hours Yes Assistants Yes

Resources

Bibliography

-

Ressources en bibliothèque

- Gravitation and Cosmology / Weinberg
- The classical theory of fields / Landau
- Gravitation / Mizner

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=14022