

PHYS-407 Frontiers in nanosciences

Kern Klaus, Lingenfelder Mag	galí, Rusponi Stefano
------------------------------	-----------------------

Cursus	Sem.	Type
Ingphys	MA1, MA3	Opt.
Physicien	MA1, MA3	Opt.

Language of teaching	English
Credits	4
Session	Winter
Semester	Fall
Exam	Oral
Workload	120h
Weeks	14
Hours	4 weekly
Courses	2 weekly
Exercises	2 weekly
Number of	
positions	

Summary

The students understand the relevant experimental and theoretical concepts of the nanoscale science. The course move from basic concepts like quantum size effects to ##hot fields## such as spin transport for data storage applications (spintronics), carbon electronics, or nanocatalysis.

Content

- 1. Introduction to the concepts of nanoscale science
- 2. The art of making nanostructures:
- a. Bottom-up assembly
- b. Top-down fabrication
- 3. Quantum structures and devices:
- a. Current at the nanoscale
- b. Quantum technology
- 4. Carbon nanotechnology:
- a. From fullerenes to graphene
- b. Molecular electronics and machines
- 5. Microscopy and manipulation tools:
- a. Electron microscopy
- b. Scanning probe microscopy: STM, AFM, MFM
- 6. Spectroscopy tools:
- a. Electron and photon spectroscopy: XPS, XAS, Auger
- b. Electron and photon diffraction: LEED, TEM, SXRD
- c. Synchrotron radiation
- 7. Magnetism at the nanoscale:
- a. Orbital and spin magnetic moment
- b. Superparamagnetic limit in magnetic data storage
- 8. From electronics to spintronics:
- a. 2D electron gas at heterogeneous semiconductor interfaces
- b. Single electron transistor
- c. Spin transport: spin valve, GMR and TMR effects

Learning Prerequisites

Recommended courses

Solid state physics

Learning Outcomes

By the end of the course, the student must be able to:

Frontiers in nanosciences

- Explain the differences between nanoscopic and macroscopic scale
- Analyze the results of a scientific experiment
- Design a scientific experiment

Transversal skills

- Summarize an article or a technical report.
- Access and evaluate appropriate sources of information.
- Use a work methodology appropriate to the task.

Teaching methods

Ex cathedra with visiting of laboratories at EPFL and the Max-Planck-Institute for Solid State Research in Stuttgart, Germany

Assessment methods

oral exam (100%)

Resources

Ressources en bibliothèque

- Quantum Transport, Atom to Transistor / Datta
- Physics of surfaces and interfaces / Ibach
- Physics at surfaces / Zangwill
- Introduction to Nanoscience / Lindsay
- Surfaces and interfaces of solids / Lüth

Websites

• http://moodle.epfl.ch/course/view.php?id=7781

Frontiers in nanosciences Page 2 / 2