

Number of positions

CH-360	Atoms and radiation			
	Polishchuk Serhii, Versteeg Rolf Baldwin			
Cursus	Sem.	Туре	Language of	English
Ingphys	MA2, MA4	Opt.	teaching	English
Physicien	MA2, MA4	•	Credits Session Semester Exam Workload Weeks Hours	4 Summer Spring Oral 120h 14 4 weekly
			Courses Exercises	2 weekly 2 weekly 2 weekly

Summary

This course discusses the interaction between atoms and visible electro-magnetic radiation and introduces the main instrumentation for light detection and spectroscopy. The principles of LASER light sources are described, providing notions of nonlinear and ultrafast optics.

Content

Spectroscopies Fundamentals

- Emission, absorption and dispersion of light
- Quantum mechanics modelling: Einstein coefficients and Planck law
- The spectral lineshape and broadening mechanisms
- Time-dependent quantum mechanics problems

Radiation measurements:

- Spectrometers
- Interferometers
- Detectors

Fundamentals of Lasers:

- Stimulated absorption and emission of radiation
- Rate equations
- Laser cavities
- Laser gain and mode competition
- Technology, basics and limitations
- Gas, dye, excimer and solid state lasers

Non-Linear Optics

- Non-linear optical effects
- Perturbative description of nonlinear optical interactions
- Second Harmonic Generation
- Sum Frequency Generation and Difference Frequency Generation

Ultrafast Optics

- Short light pulses generation
- Mode-locking
- Pulse propagation and chirp
- Chirped Pulse amplification

Keywords

Atoms, electromagnetic radiation, spectroscopy, laser, light measurement, non-linear optics, ultrafast physics

Learning Prerequisites

Recommended courses

Learning Outcomes

By the end of the course, the student must be able to:

- Link classical and quantum mechanical pictures for the interaction of atoms with electromagnetic radiation
- Explain laser cavities
- Explain the relation between atomic properties and spectroscopic line shapes
- Explain the physics behind a laser
- Describe spectroscopic instrumentation
- Explain nonlinear optical interaction

Transversal skills

- Make an oral presentation.
- Write a scientific or technical report.
- Use a work methodology appropriate to the task.
- Demonstrate the capacity for critical thinking
- Access and evaluate appropriate sources of information.

Assessment methods

30% course project 20% mid-term 50% oral exam

Supervision

Office hours Yes Others Office: CH H1 565, CH H1 545

Resources

Bibliography W. Demtröder : Laser Spectroscopy (Springer Verlag, Berlin 1997) Hertel :Atoms, Molecules and optical physics

Ressources en bibliothèque

- Atoms, Molecules and Optical Physics / Hertel
- Laser spectroscopy / Demtröder

Notes/Handbook

Lecture slides Reading material