

MATH-429	Lie groups				
Cursus		Sem.	Туре	l anguage of	English
Ingmath		MA2, MA4	Opt.	teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	LIIGIISII
Mathématicien		MA2	Opt.		5 Summer Spring Oral 150h 14 4 weekly 2 weekly 2 weekly

Remark

pas donné en 2020-21

Summary

Lie groups are manifolds with a group structure. The interaction between the geometric and the algebraic structure of these objects gives rise to a rich and beautiful subject with various applications in physics and other branches of mathematics.

Content

- Lie groups and Lie algebras
- Classical groups
- The exponential map
- Lie subgroups and Lie subalgebras
- Homomorphisms between Lie groups
- Decomposition theorems

Keywords

Lie groups, Lie algebras, Classical groups

Learning Prerequisites

Required courses Group Theory

Recommended courses Introduction to differentiable manifolds

Lie algebras

Learning Outcomes

By the end of the course, the student must be able to:

- Define the main concepts introduced in the course
- state the theorems covered in the course and give the main ideas of their proofs
- apply the results covered in the course to examples
- deduce properties of a Lie group from the structure of its Lie algebra

Teaching methods

ex-cathedra teaching, exercise classes

Expected student activities

Attending the course, solving the weekly assignments, participating actively in the exercise classes

Assessment methods

Assignments, oral exam Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.