

CS-434 Unsupervised & reinforcement learning in neural networks

Cursus	Sem.	Туре
Life Sciences Engineering	MA2, MA4	Opt.
Sciences du vivant	MA4	Opt.

Language of teaching	English
Credits	4
Session	Summer
Semester	Spring
Exam	Written
Workload	120h
Weeks	14
Hours	4 weekly
Courses	2 weekly
Exercises	2 weekly
Number of positions	

Remark

pas donné en 2020-21

Summary

Learning is observable in animal and human behavior, but learning is also a topic of computer science. This course links algorithms from machine learning with biological phenomena of synaptic plasticity. The course covers unsupervised and reinforcement learning, but not supervised learning.

Content

I. unsupervised learning

- 1. Neurons and Synapses in the Brain. Synaptic Changes
- 2. Biology of unsupervised learning, Hebb rule and LTP.
- 3. Hebb rule in a linear neuron model and PCA
- 4. Analysis of Hebb rule and application to development
- 5. Plasticity and Independent Component Analysis (ICA)
- 6. Competitive Learning and Clustering
- 7. Kohonen networks

II. Reinforcement learning

- 8. The paradigm of reward-based learning
- in biology and theoretical formalisation
- 9. Reinforcement learning in discrete spaces
- 10. Eligibity traces and reinforcement learning in continuous spaces and applications

III. Can the brain implement Unsupervised and Reinforcement learning?

- 11. Spiking neurons and learning: STDP
- 12. Neuromodulators and Learning
- 13. Long-term stability of synaptic memory
- 14. Unsupervised learning from an optimality

viewpoint: Information Maximization

Keywords

synaptic plasticity learning rules learning algorithms neural networks

Learning Prerequisites

Required courses

Analysis I-III, linear algebra, probability and statistics

Recommended courses

Analysis I-III, linear algebra, probability and statistics

Important concepts to start the course

The student needs to be able to use mathematical abstrations as well as linear algebra, probability theory and statistics, analysis and calculus.

Teaching methods

Classroom teaching, exercises and miniproject

Expected student activities

participate in class (slides are not self-contained) solve paper and pencil exercises write and run simulations for miniproject write report

Assessment methods

The final grade is composed of two mini-projects and one exam.

The two mini-projects together count 1/3 of the final grade.

The final exam counts 2/3 of the final grade.

The exam will be written if the course has more than 40 students and oral otherwise.

Resources

Bibliography

Dayan & Abbott: Theoretical Neuroscience, MIT Press 2001; Gerstner & Kistler: Spiking Neuron Models, Cambridge Univ. Press

Sutton & Barto: Reinforcement learning, MIT Press1998,