/
/

Queen Wendy Lee				
Cursus	Sem.	Туре	Language of	English
Chemistry and chemical engineering	BA4	Obl.	teaching Credits Session Semester Exam Workload Weeks Hours Courses Number of positions	2 Summer Spring During the semester 60h 14 2 weekly 2 weekly

Summary

Fundamental knowledge of coordination compounds.

Content

Chapters 1-2, 4-5 are given in English. Chapter 3 is given in English.

1. Coordination complexes: concepts, nomenclature, structure and isomers

2. The preparation and stability of complexes: Ligand substitution, thermodynamic stability, hard-soft acid-base theory, structural aspects of stability

3. Bonding in coordination compounds: atomic orbitals (reminder), crystal filed theory, ligand field theory, molecular orbitals

4. Properties of coordination compounds: optical properties, explanation of electronic spectra, magnetic properties, magnetic measurements

Learning Outcomes

By the end of the course, the student must be able to:

- Recall typical ligands; name typical coordination compounds and describe their geometryJudge the existence of isomers and draw such isomers; Calculate the oxidation states of metals and the number of d electrons.
- Apply soft-hard acid-base theory to predict the stability of complexes; interpret chelate effect; determine the relative stability of complexes according to structural factors.
- Deduce the crystal field splitting diagram for octahedral, tetrahedral, and square planar complexes; decide the electronic configuration. Generate the ligand field diagram for octahedral complexes.
- Decide if a complex is high spin or low spin using ligand field theory; understand and explain the spectrochemical series.
- Estimate the spin-only magnetic moment of complexes according to ligand field theory; Determine whether an electronic transition is allowed and the intensity of such transition.

Assessment methods

1 compulsory test during the semester. Final grade: 30% for test + 70% for final written exam

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

- Inorganic Chemistry / Miessler
- Chimie et théorie des groupes / Walton
- Chemical Applications of Group Theory / Cotton

Websites

http://scgc.epfl.ch/telechargement_cours_chimie

Moodle Link

• http://moodle.epfl.ch/enrol/index.php?id=9461