

# ChE-430 Nanomaterials for chemical engineering application

| Cursus   | Sem.     | Type |
|----------|----------|------|
| Ingchim. | MA1, MA3 | Opt. |

Language of English teaching Credits Session Winter Fall Semester Exam Oral Workload 90h Weeks 14 Hours 3 weekly 2 weekly Courses TP 1 weekly Number of positions

# **Summary**

This course aims at understanding classical and non-classical nucleation theory, at reviewing different techniques for the synthesis of nanomaterials (mainly nanoparticles and thin films) and at learning about some key applications of these nanomaterials in chemical engineering

#### Content

#### **Keywords**

nanomaterials, classical nucleation theory, photovoltaics, light emitting diodes, solar fuels, electrocatalysis

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Describe the differences between properties of bulk and properties of nanomaterials
- Discuss classical and non-classical nucleation theory
- Identify the most suitable synthesis technique to prepare the nanomaterial of choice
- Elaborate the benefits of nanomaterials in energy applications and catalysis.

# **Teaching methods**

slides, videos, inverted classroom, laboratory at the end of the semester (at EPFL Valais in Sion)

# **Expected student activities**

inverted classroom, 2 days in the laboratory (at EPFL Valais in Sion)

Note: We combine together the 14 practical work hours at the end of the semester so to have 2 full days in the laboratory where students will synthesize nanocrystals, characterize them and test them as electrocatalysts for CO2 reduction

# **Assessment methods**

Oral exam (60%), lab report (20%), Inverted classroom (20%)

#### Resources

#### **Moodle Link**

• https://moodle.epfl.ch/course/view.php?id=15549