	Burg Andreas Peter				
Cursus		Sem.	Туре	l anguage of	English
Electrical and Electronical Engineering		BA5	Opt.	teaching	Linglish
HES - EL		Н	Obl.	Credits	3
MNIS		MA3	Obl.	Session Semester	Fall
				Exam	During the semester
				Workload	90h
				Weeks	14
				Hours	3 weekly
				Courses	2 weekly
				Exercises	1 weekly
				Number of	
				positions	

EE-334 Digital systems design

Summary

Students will acquire basic knowledge about methodologies and tools for the design, optimization, and verification of custom digital systems/hardware. They learn how to design synchronous digital circuits on register transfer level, analyse their timing and implement them in VHDL and on FPGAs.

Content

Digital systems

Views and abstractions in digital hardware systems, formalisms for system description.

Register-transfer-level (RTL) design

Methodology translating a high-level (algorithmic) system description into control and datapath structures, foundations of synchronous digital design, timing and and timing constraints, basic architectural transformations, FPGA basics. **VHDL**

VHDL language basics and event-driven simulation, VHDL RTL design, synthesis and verification.

Keywords

Digital hardware component/system, register-transfer-level design, RTL, VHDL, synthesis, verification, FPGA.

Learning Prerequisites

Required courses

Logic systems (CS-171). Microcontrollers and digital systems design (EE-208).

Important concepts to start the course

Combinational and sequential logic components. Basic computing unit architecture.

Learning Outcomes

By the end of the course, the student must be able to:

- Explain the principles and rules for safe and robust synchronous design.
- Optimize datapaths for timing and area.
- Develop state machines and control structures for digital circuits.
- Translate a register-transfer-level design into a synthesizable VHDL model.
- Synthesize datapaths and control from a high-level specification to FPGA.
- Test the correct functionality of RTL and synthesized VHDL models.

Ex-cathedra with exercises in groups and small projects using FPGA design tools and platforms.

Expected student activities

Attending lectures. Completing exercises and projects. Use FPGA design tools.

Assessment methods

Graded Homework and Final Exam

Resources

Bibliography

R. Airiau, et al., VHDL: Langage, modélisation, synthèse, Presses Polytechniques et Universitaires Romandes, 2003.
H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication, Cambridge Univ. Press, 2008.
A. Rushton, VHDL for Logic Synthesis, 3rd ed.: Wiley, 2011.

Ressources en bibliothèque

- VHDL / Airiau
- Digital Design Using VHDL, a systems approach / Dally
- Digital Integrated Circuit Design / Kaeslin
- VHDL for Logic Synthesis / Rushton

Notes/Handbook

Lecture handouts and notes. VHDL syntax summary. FPGA design tools user's guides.

Prerequisite for

TL in Micro and nanoelectronics, TP in micro-nano, EDA-Based Design, Fundamentals of VLSI