

Exercises

Number of positions

28

PHYS-724 Ultrafast Phenomena

van Mourik Frank					
Cursus	Sem.	Туре	l anguage of	English	
Advanced Manufacturing		Obl.	teaching	LIGISI	
Photonics		Obl.	Credits	4	
Physics		Obl.	Exam	Oral	
			Workload	120h	
			Hours	56	
			Courses	28	

Frequency

Every year

Remark

Every year / Fall

Summary

The course will cover fundamental concepts and recent developments in the field of time-resolved spectroscopy and introduce the basic theory to understand ultrafast (10-16 - 10-9 s) phenomena in condensed matter- and biological systems.

Content

For the study of electronic and structural dynamics in solids and (bio-) molecules in "real" time, a variety of time-resolved spectroscopic techniques (in the optical, THz, and X-ray region of the electromagnetic spectrum) are available. The fastest dynamics that are accessible with state-of-the-art experiments are the motion of electrons (10-16 s), vibrational motion of molecules (10-14 s), and electronic relaxation pathways (10-12 s). Examples include the breaking of interatomic bonds, vibrational dynamics in molecular systems, and tracking of radiative and non-radiative electron relaxation pathways in biological systems.

The course will try to address technological and theoretical aspects, and in the last part a few examples from literature will be studied:

1. Principles of femtosecond laser system

- a. Overview of laser oscillators and pulse amplification
- b. Parametric generation and amplification
- c. Pulse measurement/characterization.

2. Time-resolved spectroscopy methods

- a. Transient absorption (pump-probe) spectroscopy and fluorescence up-conversion
- b. Multidimensional spectroscopy (Photon echo)
- c. Attosecond spectroscopy using high harmonic radiation
- d. Time-resolved X-ray absorption spectroscopy using synchrotron and XFEL radiation
- 3. Theory (no, or minimal, pre-existing knowledge is required)
 - a. Non-linear optics
 - b. Density matrix formalism
 - c. Liouville-space pathways
 - d. Correlation functions

4. Examples: Photon-Echo spectroscopy, Biological electron an energy transfer, Salvation dynamics...

Students are encouraged to bring up subjects/papers for discussion.

Note

Suggested reading:

- Saleh & Teich Fundamentals of Photonics
- Series in Optics and Photonics: V. 8 Ultrafast Dynamics in Molecules, Nanostructures and Interfaces
- Peter Hamm Mukamel for dummies (http://www.mitr.p.lodz.pl/evu/lectures/Hamm.pdf)
- Minhaeng Cho Two dimensional optical spectroscopy

Keywords

Ultrafast spectroscopy, Multidimensional spectroscopy, Optical Bloch Equations, High Harmonics Generation, Attosecond Spectroscopy, Femtosecond Lasers, Nonlinear optics.