PHYS-609	Modern photovoltaic technologies			
	Haug Franz-Josef, Nüesch Frank, Romanyuk Yaroslav			
Cursus	Sem.	Туре	Language of	English
Advanced Manufacturing		Obl.	teaching	Englion
Photonics		Obl.	Credits Session	2
			Exam	Oral presentation
			Workload	60h
			Hours	26
			Courses	17
			Exercises	9
			Number of positions	

Frequency

Every year

Remark

Next time June 25-29, 2018

Summary

A link between the fundamental physics, device operation and technological development of various solar cell technologies. Learning about all modern photovoltaic technologies incl. industrially relevant wafer based silicon, thin film chalcogenide, III-V, multijunction, organic and hybrid solar cells.

Content

Day 1 1.1 Introduction, solar cell basics and operation, generations of solar cell technologies 1.2 CIGS solar cells 1.3 CdTe solar cells 1.4 III-V solar cells 1.5 Organic solar cells Day 2 2.1 QD and Dye-sensitized solar cells 2.2 Perovskite solar cells 2.3 Crystalline Si2.4 Thin Film Silicon Day 3 3.1 Light propagation and interferences in multilayer structures 3.2 Coherent and incoherent scattering for absorption enhancement

Keywords

photovoltaics, inorganic semiconductors, organic semiconductors, optics, light management

Learning Prerequisites

Recommended courses

Basic physics, basic chemistry, introduction to quantum mechanics