PHYS-625 Using Mathematica to analyse and model experimental data

Stadelmann Pierre				
Cursus	Sem.	Туре	Language of	English
Advanced Manufacturing		Obl.	teaching	Linglish
Photonics		Obl.	Credits	2
Physics		Obl.	Session	
		001.	Exam	Multiple
			Workload	60h
			Hours	28
			Courses	14
			Exercises	14
			Number of positions	

Frequency

Every year

Remark

Every year / Next time: Spring 2018 "Block course"

Summary

To learn the basics of symbolic programming using Mathematica / To understand Mathematica expressions and their use / To be able to solve linear and non-linear differentials systems / To present graphically experimental or simulated results

Content

This course is aimed to PhD students who wish to learn the symbolic programming language "Mathematica" in order to model and analyze experimental results. It will give the necessary practice of Mathematica to start using it in real situations. The syntax of Mathematica expressions will be studied in details. The course is based on notebooks that are executed interactively on PC. Many examples and exercises will be fully explained. How to obtain solutions of linear or non-linear algebraic or differential systems will be shown with worked out exercises. The use of the graphical capabilities of Mathematica to present experimental or calculated results will be emphasized.