

MATH-611 Scientific programming for Engineers

Anciaux Guillaume

Cursus	Sem.	Type
Civil & Environmental Engineering		Obl.
Mechanics		Obl.

Language of teaching	English
Credits Session	4
Exam Workload Hours Courses TP Number of positions	Project report 120h 56 18 38

Frequency

Every year

Remark

Every year/ Next time: Fall 2017

Summary

The students will acquire a solid knowledge on the processes necessary to design, write and use scientific software, including the analysis of results. Modeling aspects, which constrain software design, will lead the students to algorithmic and complexity concepts inherent to all numerical calculati

Content

Programming techniques, code factorization
Pointers, memory management, data structures
Linear system solving (LAPACK/MUMPS)
Numerical error and convergence analysis
Object Oriented Paradigm
C/C++ programming (class, operator, template)
Python/MatPlotLib
Paraview

Classical problems: series calculations, Mandelbrot fractal, signal filtering (audio and image), Fourier transform, sparse linear system, conjugate gradient optimization, heat propagation, mass spring model, wave propagation and dispersion relations.

Keywords

programming, scientific, code design, algorithm, optimization, analysis

Learning Prerequisites

Required courses

_