Bornet Aurélien, Emsley Lyndon, Stevanato Gabriele, Viger-Gravel Jasmine

Cursus	Sem.	Туре	Language of	English
Chemistry and Chemical Engineering		Obl.	teaching	English
			Credits	2
			Session	
			Exam	Oral
			Workload	60h
			Hours	29
			Courses	16
			TP	13
			Number of positions	14

Frequency

Every year

Remark

Next time: Winter 2018

Summary

The goal is to give a sound theoretical and practical foundation in NMR for various applications in research. PhD students and post-docs who have followed the course successfully should be able to perform modern multi-dimensional NMR experiments independently.

Content

Basic and advanced NMR-Part 2 comprises theoretical and practical aspects of modern bio-molecular NMR. The theoretical teaching given in the morning will comprise (among others) an introduction to density operator products and concepts of coherence transfer. Exercises (in the afternoon) will allow students to practice on multi-dimensional NMR experiments.

A bi-annual alternation with other subjects like solid state NMR is possible.

The intention is to teach PhD students and post-docs so that they can benefit from the modern high field NMR spectrometers available at EPFL. The goal is to give them a sound theoretical and practical foundation in NMR for various applications in research. PhD students and post-docs who have followed the course successfully should be able to perform modern multi-dimensional NMR experiments independently. They should also be able to help colleagues in various research groups who wish to use NMR.

Participation on the part 2 of the block course is only possible after having followed part 1 before (Basic and advanced NMR - Part 1), or under special circumstances (e.g., post-docs with prior knowledge) after discussion with the organizers.

Note

Next session February 6-10 2017 (Full)

The goal is to give them a sound theoretical and practical foundation in NMR for various applications in research. PhD students and post-docs who have followed the course successfully should be able to perform modern multi-dimensional NMR experiments independently.

Keywords

NMR

Learning Prerequisites

Required courses

Basic and advanced NMR - PART 1