CH-610 Inorganic chemistry "Fundamentals and properties"

Dyson Paul Joseph, Mazzanti Marinella, Severin Kay

Cursus	Sem.	Туре		
Chemistry and Chemical Engineering		Obl.	Language of teaching	English
			Credits	2
			Session	
			Exam	Oral
				presentation
			Workload	60h
			Hours	30
			Courses	15
			Exercises	15
			Number of	
			positions	

Frequency

Every 3 years

Remark

Next time: Fall semester 2019

Summary

To present and discuss important recent contributions in the field of inorganic chemistry with an emphasis on fundamental aspects and properties. Literature seminars based on selected publications, emanating from the last 12 months, preceded by introduction and followed by a group discussion.

Content

The topics covered in this course will include recent advances in the field of:

1. Bioinorganic chemistry (e.g. structure/function correlations and reaction mechanisms.

2. Organometallic systems (e.g. non-linear optical properties and novel electronic and magnetic properties).

3. Supramolecular coordination chemistry (e.g. new functional materials by self-assembly, the adaptive behavior of dynamic systems).

4. Inorganic/organometallic polymers.

5. Theoretical methods (e.g. the development of new methods and their application to inorganic/organometallic systems). The specific content will be chosen by the instructors and will be renewed every year. The ethics of publishing will also be discussed.

Note

Next session Spring semester 2020

Keywords

Inorganic, Organometallic, Materials, Catalysis, Spectroscopy, Theory.

Learning Prerequisites

Important concepts to start the course Masters level knowledge of inorganic/organometallic chemistry.