Inorganic chemistry "Applications and spin-offs"

Dyson Paul Joseph, Mazzanti Marinella, Severin Kay

Cursus	Sem.	Туре		English
Chemistry and Chemical Engineering		Obl.	teaching	English
			Credits	2
			Exam	Oral
				presentation
			Workload	60h
			Hours	30
			Evercises	15
			Number of positions	14

Frequency

CH-711

Every 3 years

Remark

Next time: Fall 2020

Summary

Present and discuss important recent contributions in the field of inorganic chemistry. This will be achieved by student literature seminars based on selected publications, emanating from the last 12 months. Seminar preceded by an introduction to the topic and followed by a group discussion.

Content

The topics covered in this course will include recent advances in the field of bioinorganic chemistry (e.g. structure and reaction mechanism of metalloenzymes, synthesis of bioinorganic model compounds), organometallic synthesis and catalysis (e.g. new concepts in combinatorial catalysis, new synthetic methodologies, new spectroscopic techniques) and supramolecular coordination chemistry (e.g. new functional materials by self-assembly, the adaptive behavior of dynamic systems). The specific content will be chosen by the instructors and will be renewed every year.

Note

Spring semester 2018

Keywords

Inorganic, Organometallic, Materials, Catalysis, Spectroscopy, Theory.

Learning Prerequisites

Important concepts to start the course Masters level knowledge of inorganic/organometallic chemistry.