ChE-600 Solar photovoltaics and energy systems

Guijarro Carratala Nestor, Sivula Kevin, Tress Wolfgang Richard

,	,		0 0	
Cursus	Sem.	Туре	Language of	English
Chemistry and Chemical Engineering		Obl.	teaching	Linglish
Energy		Obl.	Credits Session	2
			Exam Workload Hours Courses Exercises Number of positions	Multiple 60h 24 16 8

Frequency

Every 2 years

Remark

Next time: From February 22nd to March 27th, 2018

Summary

Fundamental concepts of solar energy conversion from a thermodynamic perspective are discussed together with the state-of-the-art solar technologies. Students present and critique results from the latest literature.

Content

- 1. Solar irradiation as an energy source for electricity generation.
- 2. Thermodynamic efficiency restrictions in photochemical energy conversion.
- 3. Electronic and electrochemical materials for energy applications; relevant solid-state and physical concepts.
- 4. Structure of solar cells, p-n junctions, heterojunctions, Schottky junctions.
- 5. Organic materials in photochemistry.
- 6. Fundamentals of semiconductor photo-electrochemistry.
- 7. Dynamics of electron transfer and charge transport processes.
- 8. Bio-inspired molecular photovoltaics.
- 9. Dye-sensitization of wide bandgap materials.
- 10. Electrochemistry in energy conversion devices overview.
- 11. Advanced strategies and materials for photochemical solar energy conversion

Hands-on experiments and demonstrations:

- Construction and testing of dye-sensitized solar cells.
- Electrochemical characterization of photovoltaic devices.
- Time-resolved laser spectroscopy (dynamics of competing electron transfer processes)

Learning Prerequisites

Recommended courses

Dipl-Ing or M.S., including physics, chemistry or materials science

Assessment methods

Oral exam and project report