EE-605 Statistical Sequence Processing

Bourlard Hervé				
Cursus	Sem.	Туре	Language of	English
Electrical Engineering		Obl.	teaching	Linglish
			Credits	4
			Session	
			Exam	During the semester
			Workload	120h
			Hours	56
			Courses	28
			TP	28
			Number of positions	20

Frequency

Every 2 years

Remark

Every 2 years. Next time: Spring 2019

Summary

This course discusses advanced methods extensively used for the processing, prediction, and classification of temporal (multi-dimensional and multi-channel) sequences. In this context, it also describes key links between signal processing, linear algebra, statistics and artificial neural networks.

Content

1. Introduction: Statistical (static and dynamic) pattern recognition, temporal pattern recognition problems, etc

Basic tools in temporal pattern modeling: Correlation, autocorrelation, linear/nonlinear AR, ARMA and ARCH modeling
 Statistical pattern recognition: Bayes classifiers, artificial neural networks (ANNs), discriminant functions,

Expectation-Maximization algorithm, dynamic programming

4. Sequence processing: discrete Markov models, hidden Markov models (HMM), autoregressive (AR)-HMM, hybrid HMM/ANN systems, parameter estimation (EM and forward-backward algorithms applied to these models)
5. Laboratory exercises: in statistical pattern recognition, autoregressive modeling, Markov models and hidden Markov models

Note

Course notes (and relevant book chapters) available.

Keywords

Statistical modeling, Markov models, hidden Markov models, artificial neural networks for sequence processing.

Learning Prerequisites

Recommended courses

Undergraduate level statistics, linear algebra (matric computations, up to PCA) and minimum knowledge/interest in signal processing and machine learning. Programming in Matlab or similar.

Assessment methods

Multiple.

Resources

Websites

• http://www.idiap.ch/resource/lectures/statistical-sequence-processing