EPFL

EE-611	Linear system theor	ry			
	Müllhaupt Philippe				
Cursus		Sem.	Туре	Language of teaching	English
Electrical Engir	eering		Obl.		
				Credits	4
				Session	
				Exam	Multiple
				Workload	120h
				Hours	56
				Courses	28
				Exercises	28
				Number of positions	

Frequency

Every 2 years

Remark

Every 2 years. Next time: Fall 2017.

Summary

The course covers control theory and design for linear time-invariant systems : (i) Mathematical descriptions of systems (ii) Multivariables realizations; (iii) Stability ; (iv) Controllability and Observability; (v) Minimal realizations and coprime fractions; (vi) Pole placement and model matching.

Content

The course contents include the following main chapters:

- Mathematical description of linear systems
- State-space solutions and realizations
- Stability
- Controllability and observability
- Minimal realizations and coprime fractions
- State feedback and state estimation

Keywords

Linear dynamic models, Linear systems, Stability, State feedback, State estimation.

Learning Prerequisites

Recommended courses

- Linear Algebra
- Differential Equations
- Automatic Control

Assessment methods

Written exam and oral presentation.