	systems		•	, ,	0,
	Maréchal François				
Cursus		Sem.	Туре	Language of	English
Energy			Obl.	teaching	English
				Credits	2
				Session	
				Exam	Multiple
				Workload	60h
				Hours	28
				Courses	14
				TP	14
				Number of	
				positions	

ME-602 Modelling, optimisation, design and analysis of integrated energy systems

Frequency

Every year

Remark

Next time: Winter 2017

Summary

The student will learn advanced concepts in the field of process integration, process modeling and optimization for the design of integrated energy systems: Life cycle energy analysis.

Content

• Advanced process integration techniques based on mixed integer programming for site scale energy system integration.

• Integration of advanced energy conversion technologies including cogeneration, heat pumps and refrigeration systems in industrial processes and urban communities.

- Combined integration of heat and water for the design of integrated system.
- Process integration of batch and discontinuous processes.
- Definition of objective functions based on life cycle & energy analysis.
- Multi-objective optimization including energetic, environmental and economic parameters.
- Application to the design of integrated energy systems: zero emission plants, advanced cycles including combined cycles, thermal solar plants, hybrid solar combined cycles.

Learning Prerequisites

Recommended courses

Process integration (advanced energy systems), modeling and optimization of energy systems, thermodynamics, basic in optimization techniques

Assessment methods

Oral presentation and project report

2P5L