

MICRO-623 Modelling micro-/nano- field effect electron devices

	Sem.	Тур
Sallese Jean-Michel		

Cursus	Sem.	Туре	Language of	English
Microsystems and Microelectronics		Obl.	teaching	Linglish
			Credits	1
			Session	
			Exam	Written
			Workload	30h
			Hours	14
			Courses	14
			Number of positions	20

Frequency

Every 2 years

Remark

Next time: June 13 to 15, 2018

Summary

The course provides an in depth modeling of emerging field effect transistors in CMOS technologty. Starting from the basis, the course will gardually introduce essential aspects to end up with a rigorous description of key features, Nanowire FET & its application to biosensing will also be analyzed.

Content

- A) Bulk MOSFETs
- I) The concept of inversion charge linearization
- II) Transcapacitances and charge partitionning
- III) Short channel effects
- B) Multigate inversion mode MOSFETs
- I) Electrostatics in double gate architectures
- II) Quantum confinement corrections in DG FETs
- III) Modelling cylindrical inversion mode MOSFETs
- IV) Modeling arbitrary geometries MOSFETs
- C) Junction-Less FETs (depletion-accumulation mode FETs)
- I) Electrostatics in JL Double Gate junction less FET architectures
- II) Modeling the nanowire JL FET
- III) JL nanowires for bio-sensors (including surface/interface traps)
- D) Transport at the nano-scale
- I) Introduction to quantum conductance
- II) Conceptual modeling of a 'molecular FET'
- III) Basics of ballistic transport

Keywords

multigate MOSFET, junctionless FET, nanowires, bio-sensors, ballistic transport

Learning Prerequisites

- Recommended courses
- Basic course in maths, physics