

PHYS-635 Semiconductor photonics and quantum structures

Grandjean Nicolas				
Cursus	Sem.	Туре	Language of	English
Photonics		Obl.	teaching	Linglish
			Credits	2
			Session	
			Exam	Oral
			Workload	60h
			Hours	28
			Courses	28
			Number of positions	

Frequency

Every year

Remark

Next time: Spring 2018 - schedule under modification

Summary

This course gives an overview of the current trends in semiconductor nanophotonics, with an emphasis on quantum nanostructures and optical cavities. Different light-matter interaction regimes in cavity-quantum structure systems are discussed. Nanophotonic light emitting devices are presented.

Content

- 1) Introduction (4h)
- a. Semiconductor Materials for Photonics
- b. Basic physical properties
- c. Optical properties light matter interaction
- 2) Electronic Properties of semiconductor nanostructures (6h)
- a. Quantum confinement
- b. Single photon emission photon entanglement
- 3) Microcavities and photonic crystals (6h)
- a. Planar cavities
- b. 2D photonic crystals 1D nanobeams
- 4) Light-matter interaction in cavities Cavity quantum electro-dynamics (8h)
- a. Purcell effect
- b. Weak and strong coupling regimes
- c. Non-linear effects
- 5) Photonics quantum devices (4h)
- a. Quantum well and quantum dot lasers
- b. Nanolasers
- c. Single photon emitters

Keywords

Nanostructures, photonic cavities, quantum dots, nanolasers

Learning Prerequisites

Important concepts to start the course Solid state physics, optics