

Vichi Alessa	ndro			
Cursus	Sem.	Туре	Language of	English
Physics		Obl.	teaching	LIIGIISII
			Credits	4
			Session	
			Exam	Multiple
			Workload	120h
			Hours	56
			Courses	28
			Exercises	28
			Number of	
			positions	

Frequency

Every year

Remark

Every year / Next time: Fall 2017

Summary

The course builds on the two previous courses on the subject. The main subject is the study of quantum field theories at the loop level. The course introduces the concept of loop divergences and renormalization. Non abelian gauge theories are also discussed in depth.

Content

Skills developed in the course include the use of the Path integral formalism, methodologies to perform loop calculations and renormalization.

1) Path integral approach to QFT

2) Regularization and renormalization

- applications to scalar fields with a quartic interaction
- application to Yukawa theory
- application to Quantum Electrodynamics
- 3) Non-abelian gauge theories
 - BRST quantization
 - renormalization at 1- loop
- 4) The renormalization group
 - Callan Symanzik equation
 - asymptotic freedom
 - fixed points
- 5) Anomalies

Keywords

Path integral formalism, divergences renormalization, Gauge theories Renormalization group, Anomalies

Learning Prerequisites

Required courses Quantum mechanics 1,2 - Quantum Field theory 1,2

Recommended courses Conformal Field theory and gravity Gauge theories and the Standard Model

Expected student activities

Study a quantum field theory at quantum level. Understanding and interpreting loop effects in a quantum field theory. Performing loop calculations in gauge theories.

Resources

Bibliography

An introduction to Quantum Field Theory, by Peskin and Schroeder The quantum theory of Fields, Vol 1,2 by Weinberg

Ressources en bibliothèque

- The quantum theory of fields / Weinberg . Vol2
- The quantum theory of fields / Weinberg . Vol1
- An introduction to Quantum Field Theory / Peskin, Schroeder