

PHYS-731 Magnetic confinement

Fasoli Ambrogio, Graves Jonathan, Ricci Paolo, Sauter Olivier, Testa Duccio

Cursus	Sem.	Туре	Language of	English
Physics		Obl.	teaching	Ligist
			Credits	4
			Session	
			Exam	Oral
			Workload	120h
			Hours	56
			Courses	28
			Exercises	28
			Number of positions	

Frequency

Every 2 years

Remark

Remarque : Every 2 years / Next time: Fall 2018

Summary

The course provides an overview of the fundamentals of magnetic confinement of plasmas for fusion. The different magnetic confinement configurations are presented, with a description of their operating regimes. The basic elements of particle and energy transport are introduced.

Content

The course will consist of three parts:

- an overview of the different magnetic confinement configurations (tokamaks, stellarator, RFPs, ...) and of the operating regimes (L mode, H mode, ...), with an introduction to the plasma-wall interaction (5 lectures);

- introduction to particle and energy transport in magnetic confinement devices (classical, neoclassical, and turbulent transport) (6 lectures);

- basic principles of plasma heating and current drive, including heating due to fusion-generated alpha particles (3 lectures).