

. .

Felici Federico, Moret Jean-Marc				
Cursus	Sem.	Туре	Language of	English
Physics		Obl.	teaching	English
			Credits	2
			Session	
			Exam	Oral
				presentation
			Workload	60h
			Hours	40
			Courses	16
			Exercises	16
			TP	8
			Number of	
			positions	

Frequency

Every 2 years

Remark

Every 2 years / Next time: Spring 2018 (Block course)

Summary

Obtain an understanding of the principal requirements for the control of high power tokamak pulses and to understand how these can be met by applying the basic principles of control theory.

Content

- 1. Overview of control requirements in a tokamak current ITER design of plasma control
- 2. Basic principles of control theory model types, identification, controllers, LTI, non-LTI
- 3. Design of controllers for plasma equilibrium control of ITER
- 4. Advanced issues related to ITER plasma shape control constraints, optimisation
- 5. Design of controllers for kinetic control of 0-D quantities energy and density, quantised actuators
- 6. Advanced issues related to kinetic control of 0-D quantities
- 7. Formulation of the control of continuous radial plasma profiles
- 8. Advanced issues related to profile control actuator conflict
- 9. Stabilisation of MHD activity and current research work
- 10. Issues related to the control of the plasma-wall interactions divertor, wall contact
- 11. Overview of the state of the art in the field and future tendencies in ITER

Resources

Websites

• http://crpp.epfl.ch

