
PHYS-743 Parallel programming
Keller Vincent, Richart Nicolas

Cursus Sem. Type
Physics Obl.

Language of
teaching

English

Credits 3
Session
Exam Multiple
Workload 90h
Hours 48

Courses 20
Exercises 20
TP 8

Number of
positions

8

Frequency

Every year

Remark

Next time: Fall 2018 "Block course"

Summary

Learn the concepts, tools and API's that are needed to debug, test, optimize and parallelize a scientific application on a
cluster from an existing code or from scratch. Both OpenMP (shared memory) and MPI (distributed memory) paradigms
are presented and experimented.

Content

This course is a two weeks long course. It is open to all the PhD students with a solid background in programming.
The first week is dedicated to the theoretical concepts and practical sessions lead by teaching assistants.
Starting with the concepts of the hardware of one node of a cluster (memory hierarchy, instructions, networking, etc..),
you will learn how to debug and optimize a sequential code to be run efficiently on one node of a cluster. You will go
through the entire Software Development Cycle loop (analyze – implement – debug – test) using standard GNU and
proprietary tools (gdb, valgrind, gprof, Intel amplifier).
Secondly, the two standard industrial parallel paradigms targeting the shared and distributed memory models are
introduced: OpenMP (shared) and MPI (distributed). You will learn the basic concepts of the parallel programming. The
goal is to learn how to choose the right paradigm for an application based on its needs.
The OpenMP standard will be presented in its 3.1 version (without the hardware targets nor the SIMD constructions)
from the basic loop parallelization directives to the tasks concepts.
The MPI standard will be covered up to the standard 3. You will learn how to correctly use blocking and non-blocking
point-to-point and collective communications as well as advanced datatypes, one-sided communications, dynamic
process management and parallel I/O.
Throughout all the first week, we'll take practice the learned concepts by using a simple toy application: a 1D Poisson
solver (using a finite difference scheme). From a fully bugged sequential implementation, you'll optimize it, parallelize it
using OpenMP and MPI to come up finally with an optimized hybrid implementation of the same solver.
Please note that this course will not tackle the programming of accelerators such as GPU's or Intel Xeon Phi's.
The second week is dedicated to a personal work on your own (or provided) application.
CONTENT OF THE COURSE
Week 1: Lecture + Practical session
Day 1: Optimization of a sequential code

• Compilation basics, usage of standard development tools
• Software development life cycle (debug – profile – optimize)
• Parallelization concepts

Day 2: Parallelization on a shared memory node
• NUMA nodes architecture
• Parallelization using OpenMP: Directives; Runtime Library Routines; Environment variables; Affinity: a major issue

2017-2018 COURSE BOOKLET

Parallel programming Page 1 / 2



for high performance
Day 3: Parallelization on a distributed memory cluster: basic concepts

• Blocking and non-Blocking point-to-point communications
• Blocking collective communications

Day 4: Parallelization on a distributed memory cluster: advanced concepts
• Advanced MPI types. Communicators and groups. Dynamic Process management, virtual topologies
• Persistent communications and One-sided communications (RMA's)
• Parallel I/O with MPI
• Non-Blocking collective communications

Day 5: Hybrid programming (OpenMP + MPI)
• Introduction to hybrid programming
• How to write a (successful) research project proposal in a large data center

Week 2: Personal project
In order to use all the concepts learned during the first week, a one-week long project is due. You can bring your own
application or we'll provide you one. Examples of projects follow:

• Mandelbrod set
• Travelling salesman problem
• N-body simulation

The work time budget for the project is 32 hours of individual work plus 8 hours in contact with an assistant. You'll have
15 minutes to present your project with 5 additional minutes for questions & answers.

Note

Limited to 8 participants

Keywords

OpenMP, MPI, HPC, Parallel programming

Learning Prerequisites

Required courses
Strong knowledge of C, C++ or Fortran 90
Basic knowledge of Linux and bash scripting

Resources

Notes/Handbook
By the end of the course, the student must be able to:
• Optimize sequential and parallel codes
• Implement algorithms in parallel with OpenMP and MPI
• Investigate the performances of parallel code

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=13817

2017-2018 COURSE BOOKLET

Parallel programming Page 2 / 2

http://moodle.epfl.ch/course/view.php?id=13817

