ENG-606(a) Design of experiments (a) - Fall semester

Fuerbringer Jean-Marie

	-	_		
Cursus	Sem.	Туре	Language of	English
Advanced Manufacturing		Obl.	teaching	English
Civil & Environmental Engineering		Obl.	Credits	4
Energy		Obl.	Exam Project report	
Mechanics		Obl.	Workload	120h
Robotics, Control and Intelligent Systems		Obl.	Hours Courses	56 20
			TP	36

Language of	English
teaching	
Credits	4
Session	
Exam	Project report
Workload	120h
Hours	56
Courses	20
TP	36
Number of	50
positions	

Remark

Block course Fall 2018 (including a 2 days optional pre-course on Matlab)

Content

Experiment analysis and planning

Treatment of qualitative factors

- · Inference of constant and random coefficient models
- · Graeco-latin squares design
- · Balanced bloc design
- Analysis of variance (Anova)

Treatment of quantitative factors

- · Empirical models
- Matricial treatment of the multilinear regression
- · Analysis of non-orthogonal estimators
- · Analysis of variance

Standard designs for first and second degree models

- Hadamard, factorial, fractional factorial designs
- · Normal and half normal
- · Composite, Doehlert and Box Behnken design
- · Canonical analysis

Note

Specifically the objectives are:

• To transfer to the student the conceptual basis for designing, performing and analyzing statistical design of experiments

• To let the student understand the methodology of response surface, with the mathematical concepts that allow the evaluation and the optimization of a matrix of experiments

To develop a principle of know-how to evaluate, optimize and analyze design of experiments

• To develop conceptual understanding of the design of experiments that allows the PhD student to collaborate with statisticians

Given during fall semester; block course (2x3 days) The course requires to be familiar with Excel or Matlab