ENG-606(c) Design of experiments (c) - Spring semester

Fuerbringer Jean-Marie

Cursus	Sem.	Туре	Language of	Fnalish
Advanced Manufacturing		Obl.	teaching Credits Session Exam	English
Civil & Environmental Engineering		Obl.		4
Energy		Obl.		Project report
Mechanics		Obl.	Workload	120h
Robotics, Control and Intelligent Systems		Obl.	Hours Courses	56 20
			TP	36
			Number of	60

Frequency

Every year

Remark

Block course Spring 2019

Summary

The course teaches the acquisition of a methodology of designing experiments for optimal quality of the results and of the number of experiments.

Content

Experiment analysis and planning

Treatment of qualitative factors

- Inference of constant and random coefficient models
- Graeco-latin squares design
- Balanced bloc design
- Analysis of variance (Anova)

Treatment of quantitative factors

- Empirical models
- Matricial treatment of the multilinear regression
- Analysis of non-orthogonal estimators
- Analysis of variance

Standard designs for first and second degree models

- Hadamard, factorial, fractional factorial designs
- Normal and half normal
- Composite, Doehlert and Box Behnken design
- Canonical analysis

Note

Specifically the objectives are:

Design of experiments (c) - Spring semester

positions

• To transfer to the student the conceptual basis for designing, performing and analyzing statistical design of experiments

• To let the student understand the methodology of response surface, with the mathematical concepts that allow the evaluation and the optimization of a matrix of experiments

• To develop a principle of know-how to evaluate, optimize and analyze design of experiments

• To develop conceptual understanding of the design of experiments that allows the PhD student to collaborate with statisticians

Given during spring semester; block course (2x3 days) The course requires to be familiar with Excel or Matlab

Keywords

Experimental methodology, optimization of experimental plan, applied statistics, empirical models, sensitivity analysis

Learning Prerequisites

Recommended courses Basic statistics, Matrix algebra, Matlab and/or Excel