MICRO-606 Scaling in MEMS

Renaud Philippe, Shea Herbert

Cursus	Sem.	Туре
Advanced Manufacturing		Obl.
Microsystems and Microelectronics		Obl.

Language of	English
teaching Credits	1
Session	
Exam	Oral
	presentation
Workload	30h
Hours	14
Courses	14
Number of positions	16

Frequency

Every 2 years

Remark

Next time in Summer 2019 : 20 au 21 aout 2019

Summary

This doctoral class covers the scaling of MEMS devices, including mechanical, thermal, electrostatic, electromagnetic, and microfluidic aspects.

Content

- Introduction to scaling laws: scaling of classical mechanical systems, scaling of classical electrical systems, breakdown in scaling, quantum breakdown.
- Thermal effects: conduction, convection, dynamics, breakdown, thermal micro-actuators, microreactors.
- Mechanical devices: mass-spring model, mechanical noise, squeeze film effects.
- Electrical devices: electrostatic micro-actuators, electrostatic breakdown, tunnel sensors, coils and inductors, electromagnetic micro-actuators, magnetostriction, magnetic beads.
- Microfluidics: liquid flow, gas flow, diffusion-mixing, surface tension, entropy trapping.
- Electrokinetics: dielectrophresis, EHD and MHD pumps, electrowetting, electroosmosis, capillary electrophoresis.

Keywords

Scaling laws, thermal micro-actuators, electromagnetic micro-actuators, microfluidics, electrokinetics

Learning Prerequisites

Recommended courses

- and/or microsystems and MEMS technologies
- Basics of physics

