ENV-723 Models for applied environmental economics

Vöhringer Frank				
Cursus	Sem.	Туре	Language of	English
Civil & Environmental Engineering		Obl.	teaching	English
			Credits	1
			Session	
			Exam	Oral
			Marke ad	presentation
			vvorkioad	30n
			Hours	13
			Courses	13
			Number of	
			positions	

Frequency

Every 2 years

Remark

Every two years / Next time: Spring 2019, min 5 participants

Summary

Mainly based on the discussion of peer reviewed academic papers, the course introduces non economists to the main types of applied models used in environmental economic analysis: linear programming, partial and general equilibrium, game theory, and agent based models.

Content

For each type of applied environmental economic model, there is a brief general introduction, followed by a discussion of a peer-reviewed academic paper on an applied topic using that type of model.

Families of models presented and discussed:

- Linear programming (paper topic: urban pollution; model features in paper: spatial)

- Partial equilibrium (paper topic: timber industry and wildlife conservation; model features in paper: integrated assessment)

- Computable general equilibrium (paper topic: carbon taxes; model features in paper: multi-regional)
- Game-theoretic (paper topic: climate negotiations; model features in paper: cooperation)
- Agent-based (paper topic: diffusion of plug-in hybrid vehicles; model features in paper: spatial, stochastic)

Note

This course does not require any prior economic knowledge, but it is easier for those who attended ENV-615 "Environmental Economics for Engineers" or ENV-620 "Environmental Economics for Engineers (2018)". It will only be given for a minimum of 5 students.

Keywords

environmental economics economic modeling

Learning Prerequisites

Recommended courses ENV-615, Environmental Economics for Engineers (before 2018) or ENV-620 Environmental Economics for Engineers (2018)". (after 2018)

Learning Outcomes

By the end of the course, the student must be able to:

- to understand the differences between simulation and optimisation models
- to describe the main characteristics of each model type
- to discuss the main merits and limitations of each modeling approach
- to recognize attributes of well written papers

Resources

Bibliography

Nalle, D.J. et al. (2004): Modeling joint production of wildlife and timber, Journal of Environmental Economics and Management 48, 997-1017.

Beck, M. et al. (2015): Carbon tax and revenue recycling: Impacts on households in British Columbia, Resource and Energy Economics 41, 40-69.

Eppstein, M.J. et al. (2011): An agent-based model to study market penetration of plug-in hybrid electric vehicles, Energy Policy 39, 3789-3802.