

PHYS-719 Advanced biomedical imaging methods and instrumentation

0.00000		
Cursus	Sem.	Type
Electrical Engineering		Opt.
Neuroscience		Opt.
Photonics		Obl.
Physics		Obl.

Gruetter Rolf

Language of teaching	English
Credits	4
Session	
Exam	Term paper
Workload	120h
Hours	56
Courses	28
Exercises	28
Number of	
positions	

Frequency

Every year

Remark

Every year / Fall

Summary

The main goal of this course is to give the student a solid introduction into approaches, methods, and instrumentation used in biomedical research. A major focus is on Magnetic Resonance Imaging (MRI) and related methods, but other imaging modalities will be increasingly covered.

Content

Introduction (Bloch equations; Components of an MRI systems; Peamplifier, ADC;Longitudinal interference)
MRI basics (Spin-warp imaging, slice selection, EPI;Fourier image reconstruction, zero-filling apodization; -space imaging strategies - what defines contrast;Gbbs ringing and other artefacts)

Hardware of imaging (Gradient coils - eddy currents; Shimming: Theory of coil design, spherical harmonics; field mapping and shim methods)

Localization methods for MRS (ISIS, PRESS, STEAMI; Chemical shift displacement error; Water suppression methods, fat suppression methods, dynamic range)

Multinuclear MRS in an inhomogenous RF field (Localization methods (PT, DEPT, HH);Decoupling, WALTZ, adiabatic decoupling;Adiabatic RF pulses;Absolute quantification (water, external, internal))

Moving magnetization (Artifact recognition - bases of artifacts; 2nd moment nulling, PC flow imaging, TOF; Triggering and synchronization)

Diffusion MR(Stejskal-tanner, b value, Einstein-stokes relationship; Restricted vs. hindered diffusion; q-space imaging; DTI and fiber tracking)

Perfusion imaging(Pulsed arterial spin labeling, FAIR, EPISTAR;Continuous arterial spin labeling)

 $Magnetization\ transfer (MTC\ imaging,\ Solomon\ equations; Saturation\ transfer\ experiments)$

Rf coils(Theory of matching; Coil design surface coil TEM coil; Diel effects, coil loading and efficiency)

Imaging sequences (STEAM, SE, FSE (CPMG), FLASH, SSFP)

fMRI(BOLD effect, SE vs GE imaging; Pharmacological MRI; Biophysical basis)

Modeling (Tracer kinetics; Uptake curves)

Note

Above program is preliminary and for the first year only. May change to include other modalities as well in future years

Keywords

spin physics, MRI, RF engineering