

# MICRO-706 Microfluidics for lab-on-a-chip

de Malsche Wim, Le Gac Séverine

| Cursus                            | Sem. | Type |
|-----------------------------------|------|------|
| Microsystems and Microelectronics |      | Obl. |

| Language of teaching | English    |
|----------------------|------------|
| Credits              | 1          |
| Session              |            |
| Exam                 | Term paper |
| Workload             | 30h        |
| Hours                | 14         |
| Courses              | 14         |
| Number of positions  | 30         |

## **Frequency**

Every 2 years

#### Remark

Next time Spring 2020

### **Summary**

The course covers the entire field of lab-on-a-chip technology, including microfluidic principles and various microfabrication approaches, and presenting concrete examples of devices for (bio)analysis, cell biology, tissue regeneration and microreactors.

#### Content

- Introduction to microfluidics and lab-on-a-chip technology origins scaling laws applications
- Microfluidic principles: flow actuation; pumps; mixers; valves; etc.
- Introduction to fabrication techniques for the production of microfluidic devices, using "cleanroom materials" such as silicon and glass, as well as polymer materials.
- Surface modification: surface passivation; and immobilization of active and/or recognition elements
- (Bio)molecule analysis: sample preparation; molecular separation; integrated devices for biomolecule analysis
- Microreactors
- Microfluidics for cell biology: engineering device for experimentation on cells; tissue regeneration and organ-on-a-chip platforms

### Keywords

Microfluidics, Lab-on-a-Chip, Bioanalysis, Microfabrication, Organ-on-a-Chip