

MSE-643 Optical Materials: Fundamental concepts and recent developments

Dasgupta Tapajyoti, Sorin Fabien					
Cursus	Sem.	Туре	Language of	English	
Materials Science and Engineering		Obl.	teaching	English	
			Credits	1	
			Session		
			Exam	Oral	
			Workload	30h	
			Hours	15	
			Courses	11	
			Exercises	4	
			Number of positions		

Frequency

Every 2 years

Remark

Postponed until further notice

Summary

In this class we will review the fundamental origin of the optical properties exhibited by different classes of materials. We will then give examples of the most up-to-date research on optical materials in a few growing scientific and technological fields.

Content

The exploitation of the optical properties of materials is becoming a key aspect in a growing variety of fields beyond telecommunication, such as energy harvesting and saving, health care and life sciences, and sensing and monitoring. Scientists and engineers in these fields of application are very likely to face challenges associated with the understanding of light interaction with different types of materials and configurations. In this course we will present the fundamental concepts behind light propagation in materials and light-matter interaction. The optical properties of different classes of materials will be introduced and explained. This will give us the basis to discuss up-to-date research activities in the field of optical materials for light transport and transmission (optical fibres, waveguides and transparent conducting materials), light absorption and emission (photodetectors and photovoltaic devices, LEDs) and light management solutions (photonic crystals, plasmonics, metamaterials).

Keywords

optical properties of materials

Learning Prerequisites

Recommended courses

Basic knowledge in waves physics, Optics and solid state physics.

Assessment methods

Oral exam