JORLET			EPFL
Magnetic confinement			
Faadi Ambragia, Cravea, Janathan, Laizu, Jaaguim	Diani Daala	Soutor Olivier	Toote

Fasoli Ambrogio, Graves Jonathan,	, Loizu Joaquim	, Ricci Paolo, Saute	er Olivier, Testa
Duccio, Tran Minh Quang			

Cursus	Sem.	Туре	Language of	English
Physics		Obl.	teaching	English
			Credits	4
			Session	
			Exam	Oral
			Workload	120h
			Hours	56
			Courses	28
			Exercises	28
			Number of positions	

Frequency

PHYS-731

Every 2 years

Remark

Every 2 years / Next time: Fall 2018

Summary

To provide an overview of the fundamentals of magnetic confinement (MC) of plasmas for fusion. The different MC configurations are presented, with a description of their operating regimes. The basic elements of particle & energy transport, of plasma-wall interaction & of burning plasma are introduced.

Content

The plasma heating techniques are addressed. The course aims at providing both an experimental and a theoretical approach to the subjects.

The course will consist of three parts:

• an overview of the different magnetic confinement configurations (tokamaks, stellarator, RFPs, ...) and of the operating regimes, with an introduction to the plasma-wall interaction and to the burning plasma physics;

• introduction to particle and energy transport in magnetic confinement devices (classical, neoclassical, and turbulent transport);

• basic principles of plasma heating and current drive, including heating due to fusion-generated alpha particles.

Learning Prerequisites

Required courses

The introductory plasma physics courses are a pre-requisite.