

MATH-697 Positive characteristic algebraic geometry (2018)

Patakfalvi Zsolt	atakfa	vi Z	'solt
------------------	--------	------	-------

Cursus	Sem.	Type
Mathematics		Obl.

Language of teaching	English
Credits	3
Session	
Exam	Oral presentation
Workload	90h
Hours	42
Courses	28
Exercises	14
Number of positions	15

Remark

Next time: Fall 2018

Summary

This is a course on the geometry of algebraic varieties defined over fields of positive characteristic.

Content

The goal of the course is to learn the most possible techniques in positive characteristic algebraic geometry geometry. Examples of such techniques are: techniques connected to Kodaira vanishing and non-vanishing, such as torsor- and semi-positivity-method, bend and break, Keel's lifting statement, Forbenius trace method, generic vanishing in positive characteristic. Students will learn as much of these techniques as possible during a semester.

The required background for the course is a decent foundation of algebraic geometry, that is, a knowledge of Hartshorne's graduate textbook "Algebraic Geometry".

Keywords

algebraic geometry, positive characteristic

Learning Prerequisites

Required courses

Algebraic geometry (masters course), Scheme theory (PhD course), Sheaf cohomology (PhD course)

Learning Outcomes

By the end of the course, the student must be able to:

• understand positive characteristic techniques in algebraic geometry

Resources

Notes/Handbook

provided course notes