Detel



# MATH-651 **Positive characteristic algebraic geometry II (2019)**

| Pataktaivi Zsoit |      |      |             |              |
|------------------|------|------|-------------|--------------|
| Cursus           | Sem. | Туре | Language of | English      |
| Mathematics      |      | Obl. | teaching    | English      |
|                  |      |      | Credits     | 3            |
|                  |      |      | Session     |              |
|                  |      |      | Exam        | Oral         |
|                  |      |      |             | presentation |
|                  |      |      | Workload    | 90h          |
|                  |      |      | Hours       | 56           |
|                  |      |      | Courses     | 28           |
|                  |      |      | TP          | 28           |
|                  |      |      | Number of   | 15           |
|                  |      |      | positions   |              |
|                  |      |      |             |              |

### Summary

This is the second semester of a course on the geometry of algebraic varieties defined over fields of positive characteristic.

### Content

The goal of the course is to learn the most possible techniques in positive characteristic algebraic geometry geometry. Examples of such techniques are: techniques connected to Kodaira vanishing and non-vanishing, such as torsor- and semi-positivity-method, bend and break, Keel's lifting statement, Forbenius trace method, generic vanishing in positive characteristic. Students will learn as much of these techniques as possible during a semester.

This is the second semester of a course on the same topic. The required background is the first semester of the course, that is, the knowledge of the material of the course "Positive characteristic algebraic geometry".

### **Keywords**

algebraic geometry, positive characteristic

### Learning Prerequisites

**Required courses** 

Algebraic geometry (masters course), Scheme theory (PhD course), Sheaf cohomology (PhD course)

## Learning Outcomes

By the end of the course, the student must be able to:

• understand positive characteristic techniques in algebraic geometry

Resources Bibliography provided course notes