| MATH-654    | Topics in 2D continuum random geometry |      |      |                     |                   |
|-------------|----------------------------------------|------|------|---------------------|-------------------|
|             | Aru Juhan                              |      |      |                     |                   |
| Cursus      |                                        | Sem. | Туре | Language of         | English           |
| Mathematics |                                        |      | Obl. | teaching            | English           |
|             |                                        |      |      | Credits             | 3                 |
|             |                                        |      |      | Session             |                   |
|             |                                        |      |      | Exam                | Oral presentation |
|             |                                        |      |      | Workload            | 90h               |
|             |                                        |      |      | Hours               | 56                |
|             |                                        |      |      | Courses             | 28                |
|             |                                        |      |      | TP                  | 28                |
|             |                                        |      |      | Number of positions |                   |

#### Frequency

Only this year

#### Remark

Next time: Spring 2019

### Summary

This course is about 2D continuum random geometry. We will overview the recent progress in describing and studying natural families of random curves (SLE), random height functions (GFF) and random metrics (LQG), emphasising the intimate connections between these objects.

## Content

This course is about 2D continuum random geometry, a topic that has seen a rapid development over the past 20 years. We will discuss topics like the Schramm-Loewner evolution (a family of random curves), the Gaussian free field (a natural random height function), Brownian loop soups and Gaussian multiplicative chaos (a building-block for probabilistic models of 2D quantum gravity). An important part of this course is emphasising the strong connections between these objects and the interplay between probability theory and complex analysis.

Previous encounters with Brownian motion and complex analysis (to the level of Riemann mapping theorem) are very helpful.

### **Keywords**

random geometry, conformal invariance, Brownian motion, Schramm-Loewner Evolution, Gaussian free field, Gaussian multiplicative chaos...

### Learning Prerequisites

### **Recommended courses**

Basic courses on measure theory, stochastic processes and complex analysis.

### Learning Outcomes

By the end of the course, the student must be able to:

• to describe the zoology of 2D random geometry.

# Resources



# Bibliography

There are several lecture notes available on the internet, most notably by W. Werner (on SLE and on GFF), by J. Miller (on SLE), N. Berestycki (on GFF and Gaussian multiplicative chaos).