

# MICRO-606 Scaling in MEMS

Renaud Philippe, Shea Herbert

| Cursus                            | Sem. | Type |
|-----------------------------------|------|------|
| Advanced Manufacturing            |      | Obl. |
| Microsystems and Microelectronics |      | Obl. |

| Language of teaching | English           |
|----------------------|-------------------|
| Credits              | 1                 |
| Session              |                   |
| Exam                 | Oral presentation |
| Workload             | 30h               |
| Hours                | 14                |
| Courses              | 14                |
| Number of positions  | 16                |

# **Frequency**

Every 2 years

### Remark

August 20 & 21, 2019

### Summary

This doctoral class covers the scaling of MEMS devices, including mechanical, thermal, electrostatic, electromagnetic, and microfluidic aspects.

#### Content

- Introduction to scaling laws: scaling of classical mechanical systems, scaling of classical electrical systems, breakdown in scaling, quantum breakdown.
- Thermal effects: conduction, convection, dynamics, breakdown, thermal micro-actuators, microreactors.
- Mechanical devices: mass-spring model, mechanical noise, squeeze film effects.
- Electrical devices: electrostatic micro-actuators, electrostatic breakdown, tunnel sensors, coils and inductors, electromagnetic micro-actuators, magnetostriction, magnetic beads.
- Microfluidics: liquid flow, gas flow, diffusion-mixing, surface tension, entropy trapping.
- Electrokinetics: dielectrophresis, EHD and MHD pumps, electrowetting, electroosmosis, capillary electrophoresis.

# Keywords

Scaling laws, thermal micro-actuators, electromagnetic micro-actuators, microfluidics, electrokinetics

# **Learning Prerequisites**

### **Recommended courses**

- and/or microsystems and MEMS technologies
- · Basics of physics

Scaling in MEMS Page 1 / 1