

EE-715 Optimal control

I	-aı	1lw	ass	er	Tim	m
- 1	a	aiv	ass	CI.		

Cursus	Sem.	Type
Advanced Manufacturing		Obl.
Electrical Engineering		Obl.

Language of teaching	English
Credits	4
Session Exam Workload Hours Courses Exercises Number of positions	Project report 120h 46 33 13

Frequency

Every 2 years

Remark

Further dates to be announced shortly

Summary

This doctoral course provides an introduction to optimal control covering fundamental theory, numerical implementation and problem formulation for applications.

Content

Optimization and optimal control play pivotal roles in many engineering applications – ranging from autonomous vehicles, robotics and chemical reactors to smart girds and aeronautics. The course will cover the following topics:

Basics of optimal control theory

- Optimality conditions for static problems
- Formulation of optimal control problems
- Gateaux derivative
- Pontryagin Maximum Principle

Numerical optimal control

- Indirect methods
- Direct solution methods
- Efficient derivative computation

Advanced aspects of optimal control

- Existence of optimal solutions
- Dual variables
- Singular problems
- Dissipativity and turnpike properties

Receding-horizon control of sampled-data systems

- Sufficient stability conditions with and without terminal constraints
- Economic cost functions
- Differences of continuous time and discrete time formulations

Outlook

Optimal control Page 1 / 2

- Robust optimal control
- · Modeling and implementation aspects

Note

Final project presentations and examination on 29th September, 2020. For details refer to the moodle page of the course https://moodle.epfl.ch/enrol/index.php?id=14143.

Learning Outcomes

By the end of the course, the student must be able to:

• Solve control problems arising in their research projects by means of optimal control approaches.

Assessment methods

Project Report.

Resources

Moodle Link

• http:// https://moodle.epfl.ch/enrol/index.php?id=14143

Optimal control Page 2 / 2