nanophysics				
Kern Klaus				
Cursus	Sem.	Туре	Language of	English
Advanced Manufacturing		Obl.	teaching	Linglish
Photonics		Obl.	Credits	2
Physics		Obl.	Session Exam	Oral
			Workload	60h
			Hours	36
			Courses	28
			TP	8
			Number of positions	10

PHYS-630 Advanced experimental methods in condensed matter and

Frequency

Every year

Remark

Next time: Spring (Block course) (Stuttgart - Germany)

Summary

The objective of the course is to expose PhD students to experimental measurement techniques and principles applied in front end research of condensed matter and nanophysics. Besides providing a solid background, it will focus on the crucial details which will make cutting edge experiments work.

Content

- Introduction
- Solids at the nanoscale
- Nanostructure fabrication: physical and chemical methods
- Matter at low temperatures, ultrahigh vacuum, low signal amplification
- Actuators and transducers as experimental tools
- Electronic transport
- Microscopy with atomic resolution: from electron microscopy to scannig probes
- Optics at the nanoscale
- Excitation spectroscopy: from electron spectroscopy to synchrotron based approaches

