ME-716 Similarity and Transport Phenomena in Fluid

Ancey Christophe				
Cursus	Sem.	Туре	Language of	English
Mechanics		Obl.	teaching	Linglish
			Credits	2
			Session	
			Exam	Project report
			Workload	60h
			Hours	28
			Courses	20
			Exercises	8
			Number of positions	20

Frequency

Every 2 years

Remark

Next Time Fall 2020

Summary

The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and continuum mechanics. The course covers mathematical and physical aspects

Content

Chapter 1: The concept of similarity

- Geometrical similarity
- Invariance by affine transformation, rotation, translation
- Fractal similarity
- Scaling law
- Physical similarity
- Complete similarity: drag force
- Incomplete similarity: flow resistance

Chapter 2: Transport phenomena in fluid dynamics

- Transport phenomena
- Advection
- Diffusion Heat equation
- Wave
- Shocks and conservation equations
- Boundary problems: fixed boundary, boundary layer, free boundary problem
- Classification of partial differential equations
- First-order equation, characteristic form
- Second order equation, hyperbolic, elliptic, parabolic

Chapter 3: One-parameter groups, Lie groups

- Groups of transformation
- Group invariants
- Invariant curves
- Transformation of derivative

Chapter 4: First-order differential equations

Phase portrait

- Singular point
- Separatrix
- Integrating factor
- Invariant integral curves

- Singular solution
- Change of variables

Chapter 5: Second-order differential equations

- Invariant differential equations
- Lie's reduction theorem
- Stretching group
- Singularities

Chapter 6: Similarity solutions to partial differential equation

- Similarity solutions
- Associated stretching group
- Asymptotic behavior
- Determining equations

Chapter 5: Travelling wave solution

- Translation groups
- Example: diffusion with source
- Propagation velocity
- Approach to travelling waves

Chapter 8: Hyperbolic problems

Hyperbolic problems

- One dimensional problems
- Characteristic equations
- Shock formation
- The Riemann problem

Generalization to multidimensional problems

- Linear systems
- Nonlinear systems
- The shallow-water equations
- **Chapter 9: Parabolic problems**
- Linear diffusion
- Nonlinear diffusion
- Stefan problem
- Boundary layer problem

Keywords

partial differential equation, diffusion, advection, similarity solutions, travelling wave solution, hyperbolic problems

Resources

Bibliography Bibliography is provided on the webpage

Websites

• http://lhe.epfl.ch/doctorate-en.php