

# PHYS-741 Gauge Theories and the Standard Model

Stamou Emmanuel, Wulzer Andrea

| Cursus  | Sem. | Type |
|---------|------|------|
| Physics |      | Obl. |

Language of English teaching Credits Session Multiple Exam 120h Workload Hours 56 Courses 28 28 Exercises Number of positions

### Frequency

Every year

#### Remark

Next time: Fall 2019 From: 17/09 To: 17/12

## **Summary**

The goal of this course is to explain the conceptual and mathematical bases of the Standard Model of fundamental interactions and to illustrate in detail its phenomenological consequences.

#### Content

- Non-abelian gauge theories
- Higgs mechanism and massive gauge theories
- Quarks and Leptons
- Basic electroweak phenomenology
- The flavour structure: quark masses and mixing
- Strong interactions
- Basic flavour phenomenology
- The Standard Model as an Effective Field Theory

#### **Keywords**

fundamental interactions, particle phenomenology gauge theories, Higgs mechanism,

## **Learning Prerequisites**

### Required courses

Relativistic Quantum Fields I et II, Advanced Quantum Mechanics, Advanced Quantum Field Theory,

#### Recommended courses

General Relativity, Cosmology

### **Expected student activities**

Appreciate the conceptual foundations of the Standard Model as a theory of fundamental interactions and quantitavely understand its phenomenological success. Be able to concretely apply the Standard Model theory to the prediction of



physical processes.

## Resources

## **Bibliography**

M. Peskin and Daniel Schroeder, An Introduction to Quantum Field Theory

L.B. Okun, Leptons and Quarks T-P. Cheng and L-F. Li, Gauge Theory of Elementary Particle Physics

# Références suggérées par la bibliothèque

• An introduction to Quantum Field Theory / Peskin, Schroeder