PHYS-731	Magnetic confinement Fasoli Ambrogio, Graves Jonathan, Loizu Joaquim, Ricci Paolo, Sauter Olivier, Testa Duccio, Tran Minh Quang			
Cursus	Sem.	Туре	Longuaga of	English
Physics		Obl.	Language of teaching	English
			Credits	4
			Session	
			Exam	Oral
			Workload	120h
			Hours	56
			Courses	28
			Exercises	28
			Number of positions	

Frequency

Every 2 years

Remark

Next time: Fall 2020

Summary

To provide an overview of the fundamentals of magnetic confinement (MC) of plasmas for fusion. The different MC configurations are presented, with a description of their operating regimes. The basic elements of particle & energy transport, of plasma-wall interaction & of burning plasma are introduced.

Content

The plasma heating techniques are addressed. The course aims at providing both an experimental and a theoretical approach to the subjects.

The course will consist of three parts:

• an overview of the different magnetic confinement configurations (tokamaks, stellarator, RFPs, ...) and of the operating regimes, with an introduction to the plasma-wall interaction and to the burning plasma physics;

• introduction to particle and energy transport in magnetic confinement devices (classical, neoclassical, and turbulent transport);

• basic principles of plasma heating and current drive, including heating due to fusion-generated alpha particles.

Learning Prerequisites

Required courses

The introductory plasma physics courses are a pre-requisite.