PHYS-637 Electron Matter Interactions in Transmission Electron Microscopy

Alexander Duncan, Hébert Cécile, La Grange Thomas

Cursus	Sem.	Туре	Language of	English
Physics		Obl.	teaching	English
			Credits	2
			Session	
			Exam	Oral
				presentation
			Workload	60h
			Hours	28
			Courses	28
			Number of	
			positions	

Frequency

Every 2 years

Remark

Next time: Spring 2020

Summary

This course will present the fundamentals of electronâ##matter interactions, as occuring in the energy range available in modern transmission electron microscopes, namely 60-300 keV electrons. Diffraction and high-resolution image formation as well as electron energy-loss spectrometry will be covere

Content

This course will present the fundamentals of electron–matter interactions, as occuring in the energy range available in modern transmission electron microscopes, namely 60-300 keV electrons. Diffraction and high-resolution image formation as well as electron energy-loss spectrometry will be covered.

Week 1: Introduction (CH)

Week 2: Elastic scattering by atoms and crystals. Bloch wave theory. (DA)

Week 3. Elastic scattering: kinematical and dynamical diffraction. (DA)

Week 4: Advanced diffraction, thermal diffuse scattering. (DA)

Week 5: Eastic scattering: phase contrast. (TL)

Week 6: Phase contrast, high resolution imaging. (TL)

Week 7: Phase contrast, holography and other phase retrieval methods. (TL)

Week 8: Simulation software for imaging and diffraction. (TL and DA)

Week 9: Inelastic scattering, introduction. (CH)

Week 10: Inelastic scattering: core loss spectroscopy, experiments and theoretical simulations. (CH)

Week 11: Inelastic scattering: low loss EELS. (CH)

Week 12: Inelastic scattering: super low loss, EELS for plasmonics and nanophotonics. (DA)

Week 13: Special applications of EELS, cathodoluminescence; time-resolved EELS and PINEM. (DA and TL)

Week 14: Angular-resolved EELS and its applications in core and low losses. (CH)

Learning Prerequisites

Recommended courses

Solid state physics general physics 1 2 3 4 Quantum mechanics

Expected student activities

Electron Matter Interactions in Transmission Electron Microscopy