

MICRO-628 Introduction to Finite Element Modelling in Microsystems

Quack Niels				
Cursus	Sem.	Туре	Language of	English
Microsystems and Microelectronics		Obl.	teaching	LIIGIISII
			Credits	1
			Session	
			Exam	Oral
				presentation
			Workload	30h
			Hours	21
			Courses	7
			Exercises	7
			TP	7
			Number of	30
			positions	

Frequency

Every year

Remark

Postponed to Spring 2021

Summary

Introduction to Finite Element Modelling with hands-on examples of typical microsystems.

Content

The following topics are introduced and hands-on finite modeling is performed using COMSOL Multiphysics for typical microsystems.

Introduction to FEM: Material Models, Anisotropy, Convergence, Nonlinearity, Mesh, Study Types Structural Mechanics: Modal Analysis, Thin Films, Stress, Curvature Thermal FEM Electro-Thermo-Mechanical Coupling Electrostatic FEM: Fields, Boundary Conditions, Parallel Plate Actuator, Voltage-Displacement Introduction to Damping Effects and Microfluidics

After the lectures and exercices, the student will develop an own finite element model and present the results.

Keywords

MEMS, Finite Element Modeling FEM

Learning Outcomes

By the end of the course, the student must be able to:

- Perform a finite simulation of a typical microsystem
- Present and discuss the obtained solutions