MATH-620	Working Group on Representation Theory of Locally Compact Groups				
	Monod Nicolas				
Curaua	Som Tuno				

Cursus	Sem.	Туре		F F F
Mathematics		Obl.	Language of teaching	English
			Credits	1
			Session	
			Exam	Oral presentation
			Workload	30h
			Hours	35
			Courses	7
			Exercises	14
			TP	14
			Number of positions	

Frequency

Only this year

Remark

Next time: Fall 2019

Summary

This Working Group explores the basic representation theory of locally compact groups, especially unitary representations

Content

We will study the basics of representation theory for locally compact groups.

The most important case will be unitary representations on Hilbert spaces, but representations on various Banach spaces also arise naturally in that context, both isometric and uniformly bounded (or beyond).

The fundamental structure theory includes sums and products of representations, decompositions, direct integrals, the notions of equivalence, of irreducibility and of factiriality.

The Haar measure plays a central role in the theory and will be introduced/reviewed.

Highlights of the applications include the Peter-Weyl theorem.

The dictionary between representations of groups and modules over group algebras or measure algebras will be introduced and used. This leads naturally to the notion of C*-algebra.

Related topics are fixed point theorems and amenability; these will be covered according to the taste of the participants.

Keywords

Representation Theory, Locally Compact Groups, Unitary Representations

Learning Prerequisites

Recommended courses

Learning Outcomes

By the end of the course, the student must be able to:

• Understand the concepts Introduced and explain them

Page 2 / 2