BIO-693(8)	State-of-the-Art Topics in Neuroscience VIII: Fear Learning: from neuronal circuits to translation			
	Gräff Johannes, Sandi Carmen, Schn	eggenburge	r Ralf	
Cursus	Sem.	Туре	Language of English	
Neuroscience		Obl.	teaching	

Frequency

Every year

Remark

Next time: Fall 2019

Summary

Anxiety disorders are widespread in the human population. At the same time, the behavioral paradigm of fear learning offers researchers a platform to investigate the neuronal circuit basis of emotionally motivated learning behaviors, exploiting state-of-the-art optic- and genetic approaches in mice.

Content

Anxiety disorders are widespread in the human population. At the same time, the behavioral paradigm of fear learning offers researchers a platform to investigate the neuronal circuit basis of emotionally motivated learning behaviors, exploiting state-of-the-art optic- and genetic approaches in mice. Understanding the fundamental molecular, cellular- and circuit mechanisms of fear learning will form the basis for an improved treatment of anxiety in the future. **The PhD students** will actively participate in the Symposium with questions and discussion participation. As a control that the students have reached the learning aims of the course, PhD students will **summarize a presentation of their choice during a final 3h block session under the supervision of the course instructors. MONDAY 25th NOVEMBER 2019**

Session 1	Mechanisms of fear learning: amygdala circuits	
Chair: Ralf Schneggenburger		
09:00 - 09:30	Andreas Lüthi (FMI, Basel, CH)	
	Adaptive disinhibitory gating permits associative learning	
09:30 - 09:40	Discussion	
09:40 - 10:10	Bo Li (Cold Spring Harbor, USA)	
	Amygdala circuits in motivated behaviors	
10:10 - 10:20	Discussion	
10:20 – 10:35	Short Talk 1	
10:35 – 10:40	Discussion	
11:10 - 11:40	Sheena Josselyn (University of Toronto, CDN, Toronto, Canada)	
	Making, Breaking and Linking Memories in Mice	
11:40 - 11:50	Discussion	
11:50 - 12:20	Wulf Haubensak (IMP, Wien, Austria)	
	Assembling affective states by amygdala hierarchical interactions	
12:20 - 12:30	Discussion	

12:30 - 14:00 Lunch & Poster Session

1

Oral presentation

30h

18

12

6

Credits

Session Exam

Workload

Courses

Number of positions

Exercises

Hours

Session 2 Beyond the amygdala: circuits of fear and pain involved in learning

Chair: Johannes Gräff

- 14:00 14:30 Cyril Herry (Neurocentre Magendie, Bordeaux, France)
 - Dynamic prefrontal population coding of value and action during aversive learning
- 14:30 14:40 Discussion
- 14:40 15:10 Nadine Gogolla (MPI für Neurobiologie, Munich, Germany)
- Regulation of fear and anxiety through insular cortical circuits
- 15:10 15:20 Discussion
- 15:20 15:35 Short Talk 2 15:35 – 15:40 Discussion
- 15:40 16.10 Coffee break
- 16:10 16:40 Rohini Kuner (University of Heidelberg, Germany)
- Fear and Pain: two sides of the same coin?
- 16:40 16:50 Discussion
- 16:50 17:20 Herta Flor (ZI Mannheim, Germany) The contextual modulation of fear: implications for mental disorders 16:40 – 16:50 Discussion
- 17:30 19:00 Poster Session

TUESDAY 26th NOVEMBER 2019

Session 3 Circuits for fear prediction and extinction

Chair: Carmen Sandi 09:00 – 09:30 Andrew Holmes (NIH, Bethesda, USA) Neural circuits mediating ambiguous threat 09:30 – 09:40 Discussion 09:40 – 10:10 Jelena Radulovic (NW University, Chicago, USA) Processing valence in episodic memory circuits 10:10 – 10:20 Discussion 10:20 – 10:35 Short Talk 3 10:35 – 10:40 Discussion 10:40 – 11.10 Coffee break 11:10 – 11:40 Valerie Doyère (Paris-Saclay Institute of Neuroscience, France) The amygdala and the temporal expectation of an aversive stimulus 11:40 – 11:50 Discussion 11:50 – 12:20 Merel Kindt (University of Amsterdam, Netherlands) Tba

Keywords

Anxiety disorders, Fear, Neuronal circuits

Learning Prerequisites

Recommended courses Neuroscience 2, 3 (MS-courses)

Assessment methods

The PhD students will actively participate in the Symposium with questions and discussion participation. As a control that the students have reached the learning aims of the course, PhD students will summarize a presentation of their choice during a final 3h block session under the supervision of the course instructors.

Resources

Websites

https://neurosymposiumwinter2019.epfl.ch