EPFL

EE-715	Optimal control				
	Faulwasser Timm				
Cursus		Sem.	Туре	Language of	English
Advanced Manufact	uring		Opt.	teaching	Englion
Electrical Engineerin	ng		Opt.	Credits Session	4
				Exam	Project report
				Workload	120h
				Hours	46
				Courses	33
				Exercises	13
				Number of positions	

Frequency

EE-715

Every 2 years

Remark

Next time : Spring 2022

Summary

This doctoral course provides an introduction to optimal control covering fundamental theory, numerical implementation and problem formulation for applications.

Content

Optimization and optimal control play pivotal roles in many engineering applications - ranging from autonomous vehicles, robotics and chemical reactors to smart girds and aeronautics. The course will cover the following topics:

Basics of optimal control theory

- · Optimality conditions for static problems
- Formulation of optimal control problems
- Gateaux derivative
- Pontryagin Maximum Principle

Numerical optimal control

- Indirect methods
- Direct solution methods
- Efficient derivative computation

Advanced aspects of optimal control

- Existence of optimal solutions
- Dual variables
- Singular problems
- Dissipativity and turnpike properties

Receding-horizon control of sampled-data systems

- · Sufficient stability conditions with and without terminal constraints
- Economic cost functions
- Differences of continuous time and discrete time formulations

Outlook

- Robust optimal control
- Modeling and implementation aspects

Note

Learning Outcomes

By the end of the course, the student must be able to:

• Solve control problems arising in their research projects by means of optimal control approaches.

Assessment methods Project Report.