

Leinenbach Christian, Logé Roland

Cursus	Sem.	Туре	Language of	English
Materials Science and Engineering		Opt.	teaching	LIIGIISII
		•	Credits	2
			Session	
			Exam	Oral
				presentation
			Workload	60h
			Hours	28
			Courses	28
			Number of	
			positions	

Frequency

Every 2 years

Remark

Online via Zoom

Summary

This course is designed to cover a number of materials science aspects related to the field of additive manufacturing of metals and alloys, and to provide an in-depth review of corresponding fundamentals.

Content

1. Introduction to Additive Manufacturing (AM) of metals and AM methods (LPBF, EBM, DED, other methods such as binder jetting)

- 2. Powder fabrication and characterization
- 3. Interaction between beam (laser, e-beam) and material, heat formation and heat flow in the material
- 4. Fundamentals of rapid solidification of metals and alloys
- 5. Microstructure formation and control during AM
- 6. Residual stresses and warpage, defects (porosity, cracks) in AM parts
- 7. Post-treatments and associated microstructure evolutions
- 8. Mechanical properties of AM parts (static, cyclic), mechanical anisotropy

9. Material specific considerations: AM of steels, Ni alloys, Ti alloys, Al alloys; AM of precious metals and Cu alloys; AM of special materials (MMCs, gradient materials/multimaterials); Development/optimization of alloys

Keywords

metals and alloys, laser processing, electron beam melting, solidification, microstructure, post-treatment, mechanical properties, residual stresses

Learning Prerequisites

Required courses

Participants should be educated in materials science and engineering, physics, mechanical engineering or

Assessment methods
Oral presentation